製造業 人工知能 セミナー

サイトマップサイトマップ よくあるお問合わせよくあるお問合せ リクエストリクエスト セミナー会場セミナー会場へのアクセス リンクリンク
セミナーのメニュー
  ヘルスケア系
1月
2月
3月
4月〜

化学・電気系 その他各分野
1月
2月
3月
4月〜
出版物出版物
新刊図書新刊図書 月刊 化学物質管理Gmpeople
通信教育講座通信教育講座
セミナー収録DVDDVD
電子書籍・学習ソフトDVD
セミナー講師のコラムです。講師コラム
  ↑2019/1/9更新!!
お申し込み・振込み要領お申込み・振込要領
案内登録案内登録
↑ ↑ ↑
新着セミナー、新刊図書情報をお届けします。

※リクエスト・お問合せ等
はこちら→ req@johokiko.co.jp



SSL GMOグローバルサインのサイトシール  


製造業 人工知能 セミナー

*その他 機械学習・ディープラーニング・人工知能: 関連セミナー、書籍はこちら:

「製造業における人工知能の使いこなしノウハウ」
*年間の受講者数が1000名を超える、企業での実務経験豊富な講師が丁寧に解説!


製造業における実用化レベルの

「人工知能」導入&活用方法

〜未知の異常検知・仮想検査・
開発実験環境の仮想化〜

【ニューラルネットワークモデルとMTシステム、
両手法の特徴と具体事例】

講師

MOSHIMO研  福井 郁磨 先生 [web] [Facebook]
(元オムロン(株)、元パナソニック(株)、元東レ(株)、元LG Electronics Japan Lab(株))

* 希望者は講師との名刺交換が可能です

講師紹介

1993年4月〜 オムロン(株):電子部品の原理開発、加工技術開発、ロボットの研究開発、人の聴感判定を機械化した検査装置開発などに従事
2006年6月〜 パナソニック(株):生活家電の要素技術、製品開発などに従事。
2007年11月〜 東レ(株):液晶ディスプレイなどの微細加工技術開発などに従事
2010年4月〜 LG Electronics Japan Lab(株):関西の新規研究所設立責任者、洗濯機チームリーダー、オープンイノベーション室長を歴任
2015年5月〜 MOSHIMO研:製造業支援、開発コンサルティング、生活関連用品などの研究開発に従事
*多変量解析、実験計画法、品質工学、人工知能応用技術に関して、電子部品・ロボット・加工技術・検査技術・生活家電などの分野で、約23年の経験を持つ。
*日本品質管理学会会員 / 品質工学会会員 / 滋賀県品質工学研究会会員

→このセミナーを知人に紹介する

<その他関連セミナー>

2019年3月7日 製造業における実験計画法の考え方と実施方法〜従来手法の問題点整理と解決策、人工知能技術を応用したこれからの実験計画法〜

日時・会場・受講料

●日時 2019年3月18日(月) 10:30-17:00
●会場 [東京・大井町]きゅりあん5階第4講習室 →「セミナー会場へのアクセス」
●受講料 1名46,440円(税込(消費税8%)、資料・昼食付)
 *1社2名以上同時申込の場合、1名につき35,640円
      *学校法人割引;学生、教員のご参加は受講料50%割引。→「セミナー申込要領・手順」を確認下さい。

 ●録音・撮影行為は固くお断り致します。
 ●講義中の携帯電話の使用はご遠慮下さい。
 ●講義中のパソコン使用は、講義の支障や他の方の迷惑となる場合がありますので、極力お控え下さい。
  場合により、使用をお断りすることがございますので、予めご了承下さい。
  *PC実習講座を除きます。


■ セミナーお申込手順からセミナー当日の主な流れ →

セミナーポイント

■本セミナーのポイント
最先端技術であるディープラーニングが話題になり、人工知能ブームが再来していると言われています。最先端の技術は重要ではありますが、製造業の技術者が開発実務に活用するには敷居が高いことが課題ではないでしょうか?
このように人工知能には、活用が難しいイメージがありますが、ものづくり分野に絞れば、適切な手法の使い分けとノウハウで意外と簡単に活用可能です。ディープラーニングを含む人工知能にも、アカデミックな最先端技術に対して成熟した「エンジニアリングに適した技術」があり、その技術はものづくりの開発現場で安心して使うことが可能です。
本講座では、エンジニアリングに適した人工知能技術であるニューラルネットワークモデルとMTシステムに関して、製造業における具体的な事例を用いて解説します。ものづくり技術者にとって、人工知能は目的ではなく、技術課題を解決する手段として使えることが理想的です。本講座で解説するエンジニアリングに適した人工知能技術を使うことで、技術者は、解決すべき技術課題に集中することが可能になります。

■受講対象者は?
・要素技術、生産システム、加工技術などの分野で人工知能を活用したい開発者の方々
・最先端で未成熟な技術ではなく、製造業で実績があり、簡便に使える人工知能技術を求めている方々
・エクセルのような簡単に使える人工知能技術を求めている方々
・毎年繰返し、同じような製品開発(製品設計と検証、その生産条件出し)を行っていて、その開発効率を高めたい方
・破壊検査などの抜取り検査を全数検査に変え、量産品質トレンドや設備モニタリングを行い、不良を未然に防ぎたい方々
・また、検査工程を作らず、加工工程自体が検査工程になる仮想検査技術を求めている方々
・直接計測不可能な特性を代替え特性から推定するセンサレスセンシング技術を求めている方々
・特定の不良状態を自動的に見つけるだけなく、未知の不良状態(未定義の不良品)を見つける技術が必要な方々
・品質工学や実験計画法などで、離散的な探索では成果の出ない方々
・「革新的ものづくり・商業・サービス開発支援補助金」第四次産業革命型などIoT&AI関係の補助金獲得を経営課題としてお考えの方々
※人工知能に関する予備知識は必要ありません。
※技術コンサルタントの方や、講師業を本務としている方の受講はご遠慮ください。

■受講することで得られる知識/ノウハウは?
・要素技術、生産システム、加工技術の開発者に適した人工知能技術の応用知識とノウハウ
・「製品設計条件(寸法仕様、材料仕様など)」と生産条件」から量産時の製品特性値をバラツキも含めて人工知能に精密に予測させる方法
・上記の量産時性能予測技術を利用した、製品設計条件と生産条件を試作レスで最適化する技術の構築方法(レシピジェネレーターの開発方法)
・抜き取り検査しかできなかった工程を人工知能による推定全数検査化する方法
・検査工程を作らず、加工工程自体が検査工程になる仮想検査の構築方法
・直接計測不可能な特性を代替え特性から推定するセンサレスセンシングを構築する方法
・学習していない未知の異常も検出する技術を活用した検査システム、設備の予防保全システムを構築する方法
・人的な官能(感性)検査を機械化(自動化)する方法
・製造業における人工知能の使いこなしノウハウ
・第四次産業型の補助金申請に必要なIoT&AIシステム構成と処理フローの事例
など
*当日、名刺交換をした方には、セミナー後日の具体的相談にも応じます。

セミナー内容

1. 人工知能活用による事例概要
 ・製造業に特化した人工知能活用(本講義)の全体像
 ・「製品設計条件と生産条件」の実験環境をパソコン上に再現する技術事例…レシピジェネレーターの事例
 ・設備の知能化技術事例1…仮想検査技術、センサレスセンシング技術
 ・設備の知能化技術事例2…未学習の未知の異常検出技術、予防保全技術

2. 人工知能技術の概要
 ・要素技術者から見た開発ツールとしての人工知能技術の比較
 ・補足:ニューラルネットワークモデルはブラックボックス?
 ・要素技術者に適した人工知能構築ツールの比較

3. ニューラルネットワークモデル構築の実演
 ・簡単な関係性を人工知能に学習させ、その後推定させる
 ・複雑な関係性を人工知能に学習させ、その後推定させる
 ・推定に問題ある場合の対処法1
 ・推定に問題ある場合の対処法2
 ・難しい排他的論理和問題を人工知能に解かせる
 ・品質工学、実験計画法の直交表を応用したデータセットの学習

4. 「製品設計条件(寸法仕様、材料仕様など)」と生産条件」の
   実験環境をパソコン上に再現する技術開発…レシピジェネレーター技術

【毎年繰返し行っていた電磁石コイルの開発を、設計条件と生産条件を合わせてパソコン上で自動開発を可能にした事例を解説】

 ・背景:電磁石コイルの繰返し開発の紹介
 ・製品設計部門と工法開発部門、量産部門の役割分担
 ・汎用巻線技術の開発:設計条件と設備条件の密接な関係
 ・個別最適解を求める「設計条件×設備条件=性能の平均値とバラつき」方程式の探求
 ・人工知能活用の実施手順
 ・データ収集の実験計画とその勘所
 ・データの説明性確保の課題と解決策
 ・データ数不足の解決策 要素技術を活かしたデータ増殖
 ・試作レス開発環境の構築例
 ・人工知能の推定が間違った場合の対処方法
 ・本事例を応用可能な別事例の紹介

5. 【事例2 ニューラルネットワークモデル活用】設備の知能化技術1
   …仮想検査技術、センサレスセンシング技術

【溶接の抜取り破壊検査工程を、溶接と同時に溶接強度を推定し、全数検査と量産品質トレンドや設備状態のモニタリングを可能にした事例を解説】

 ・背景:溶接と抜取り破壊検査の紹介
 ・全数検査化に先立つ要素技術
 ・人工知能活用の実施手順
 ・データ収集、及び人工知能による強度推定のシステム構築例
 ・システムの動作フローチャート
 ・本事例を応用可能な別事例の紹介

6. 【事例3 MTシステム活用】設備の知能化技術2
   …未知異常検知技術、予防保全技術

【事前に学習できない未知の不良を検出したい場合の対処方法を、エンジンの異常音など、聴感による人的官能検査工程を自動化した事例を元に解説】

 ・背景:異常音で判断する官能検査工程の紹介
 ・定義できる不良音と定義できない不良音。未知の不良を見つける必要性
 ・MTシステム(MT法)とは
 ・人工知能活用の実施手順
 ・データ収集、及び人工知能による異常音推定システム構築例
 ・システムの動作フローチャート
 ・本事例を応用可能な別事例の紹介

7. 全体質疑応答

 * * * *

▽同講師セミナー受講者の声(アンケートより)
「これまでの開発方法を大いに反省することを感じました」(研究開発)
「概念説明が非常に判りやすかった」(製品開発)
「非常にわかり易い内容で、正直これまで受講したセミナーの中で一番身になった」(技術開発)
「JISや書籍では理解できなかった内容が、スッキリ理解できた」(生産システム開発)
「ノウハウが大変参考になりました」(解析技術)
「項目設定や再実験のノウハウの活用など、大変有益でした」(部品開発)
「具体例が多く、いろんな状況に対応した解説が有り難い。社内で横展開します」(コンシューマ商品開発)
「個別の質問にも丁寧に応じて頂き、ありがとうございます」(基礎研究)
「とても分かり易くて良かったです」(ソフトウェア開発責任者)

セミナー番号:AC190310

top

注目の新刊

雑誌 月刊化学物質管理

  雑誌発・各社の事例セミナー3/19

これから化学物質管理

外観検査

生物学的同等性試験

最新の医療機器薬事入門

積層セラミックコンデンサ

全固体電池開発

RoHS指令・整合規格 徹底理解

高分子劣化・加速試験

2019カメラモジュール

分野別のメニュー

化学・電気系他分野別一覧

  植物工場他

  機械学習他

ヘルスケア系分野別一覧

  海外関連

  医療機器

各業界共通
マーケティング・人材教育等

「化学物質情報局」

特許・パテント一覧 INDEX
(日本弁理士会 継続研修)

印刷用申込フォーム    

セミナー用

書籍用

会社概要 プライバシーポリシー 通信販売法の定めによる表示 商標について リクルート
Copyright ©2011 情報機構 All Rights Reserved.