・ご受講にあたり、環境の確認をお願いしております。
お手数ですが下記公式サイトからZoomが問題なく使えるかどうか、ご確認下さい。
→
確認はこちら
*Skype/Teams/LINEなど別のミーティングアプリが起動していると、Zoomでカメラ・マイクが使えない事があります。お手数ですがこれらのツールはいったん閉じてお試し下さい。
→
音声が聞こえない場合の対処例
・Zoomアプリのインストール、Zoomへのサインアップをせずブラウザからの参加も可能です
→
参加方法はこちら
→※一部のブラウザーは音声(音声参加ができない)が聞こえない場合があります、
必ず
テストサイトからチェック下さい。
対応ブラウザーについて(公式);コンピューターのオーディオに参加に対応してないものは音声が聞こえません
動画配信サイトVimeoを用いて同時ストリーミング配信でご視聴頂けます。
(尚、Zoomへアクセスできる方は、Zoomでの受講を推奨します。)
(クリックして展開「▼」)
こちらの形式での受講をご希望の場合は
備考欄に「Zoom不可・ライブ配信希望」と記載下さい(Zoomまたはライブ配信いずれか一方でのご受講となります)。
→事前にこちらから問題なく視聴できるかご確認下さい(テスト視聴動画へ)パスワード「123456」
申込み時に(見逃し視聴有り)を選択された方は、見逃し視聴が可能です。
(クリックして展開「▼」)
・原則、開催5営業日後に録画動画の配信を行います(一部、編集加工します)。
・視聴可能期間は配信開始から1週間です。
セミナーを復習したい方、当日の受講が難しい方、期間内であれば動画を何度も視聴できます。
尚、閲覧用URLはメールでご連絡致します。
※万一、見逃し視聴の提供ができなくなった場合、
(見逃し視聴あり)の方の受講料は(見逃し視聴なし)の受講料に準じますので、ご了承下さい。
→こちらから問題なく視聴できるかご確認下さい(テスト視聴動画へ)パスワード「123456」
セミナーポイント
濡れ性制御技術は、エレクトロニクス機器・屋内外建材・輸送機器・スポーツ用品・分析カラム等、身近な生活から生産現場の至る所で広く利用されています。しかしながら、受講者の方々がそれぞれ持っている諸課題を解決するには、単純に「ヤングの式等」の一般的な理論に沿わないことも多いことも散見されます。
この講座では、それらの諸課題を解決する際に、「原理」と「表面の形成方法」の間に存在する解決課題にも踏み込み、理論と実際の間を橋渡しするような基礎的な知見も提供していきます。
故に、「濡れ性制御の原理」の解説から、液体の滑落性に焦点を当てた「表面形成プロセス」に触れた上で、原理から考えられる「超撥水性や超親水性を生かしたアプリケーション(水滴除去性・流動制御・防汚性・防曇性等)の設計指針」を紹介していきます。
○受講対象:
・表面濡れ性表面自体の開発や、表面濡れ性が関わるデバイス設計に携わっている方
・ヤングの式に代表される従来の理論式のみでは理解できない現象にお困りの方
・基本的な濡れ性理論の理解から各用途に適した材料設計指針まで、一通り一日で理解したい方
○受講後、習得できること:
・表面濡れ性の基礎知識(原理と実際の橋渡し)
・表面濡れを考慮したデバイスを設計する際の基本指針
・超撥水・超親水性、防汚性・防曇性等の高機能表面の設計コンセプト
など
セミナー内容
1.表面濡れ性に関する基礎
1.1 撥水性と親水性の定義
1.2 接触角に関する基礎方程式 Young’s model・Wenzel’s model・Cassie’s model
1.3 基礎方程式からみた、超撥水性表面と超親水性表面の理解
1.4 液滴の転落角(付着性)に関する基礎方程式
・付着エネルギー(Furmidge model・Contact angle hysteresis)
1.5 接触角・転落角の評価方法
1.6 固体表面エネルギーとZismanプロット
2.液体の滑落性に焦点を当てた濡れ性制御技術
2.1 動的撥水性評価の重要性
・フッ素系の撥水剤とアルキル系の撥水剤の例
・必ずしも、接触角:高 → 転落速度:高 ではない。
・風圧下における傾斜した撥水性表面上の水滴は、ある速度領域で停止する。
2.2 液滴が傾斜表面上を転落する際の内部流動状態
2.3 液滴の接触角と液滴の転落速度の関係
・撥水性素材の凝集が水滴の挙動を阻害する。
・接触角:高 → 転落速度:高 になる条件とは?
2.4 表面粗さの違いによる液滴の滑落性の違い
・撥水性表面上の水滴の転落
・撥水性表面にぶら下がった水滴の転落
2.5 液体の滑落性を向上させる「表面形成プロセス」の工学的ポイント
3.高耐久性超撥水性の材料設計
3.1 超撥水性表面上での水滴の転落速度の基礎方程式
3.2 超撥水性表面を高耐久性化する際の課題
3.3 有機モノリス構造体を用いた高耐久性超撥水性表面の設計コンセプト
3.4 超撥水性表面の耐久性評価法
3.5 有機モノリス構造体を用いた高耐久性超撥水性表面の機能
3.6 SLBC(Solid Liquid Balk Composite)による水滴の転落性の向上
・原理と構造
・透明化
・そのメリットと課題
4.環境衛生材料としてのTiO2光触媒の理解
4.1 TiO2光触媒が有する光誘起超親水性と酸化分解反応
4.2 光誘起超親水性のメカニズムの理解
4.3 TiO2光触媒を用いた光誘起超親水性を有する表面設計
5.各種濡れ性のアプリケーションと、その表面設計コンセプト
5.1 超撥水性と超親水性における流体摩擦の低減効果
→流体摩擦の低減に有利なのは撥水性? それとも、親水性?
5.2 防汚性を目指すための撥水性表面
→防汚性を目指すために有利な設計方針とは?
フッ素系? それとも、アルキル系?
・防汚性の評価法
5.3 撥油性のための表面設計
→撥水性と撥油性の間に表面設計方針の違いがあるのか?
5.4 防曇性を目指す材料設計指針のための結露の理解(水滴の除去・濡れ広がり)
・水滴の除去性と濡れ広がりの理解
・撥水性表面上での結露
・親水性表面上での結露
→では、結露の抑制には、撥水性と親水性はどちらが有利なのか?
・防曇性の評価法
・防曇性からみた表面設計コンセプト紹介(超親水性表面や多孔質材料を中心に)
・エレクトロウェッティングを用いた水滴除去
<質疑応答>