サイトマップサイトマップ よくあるお問合わせよくあるお問合せ リクエストリクエスト セミナー会場セミナー会場へのアクセス
セミナーのメニュー
  ヘルスケア系
ライブ配信
8月
9月
10月
2021年11月〜

化学・電気系 その他各分野
ライブ配信
8月
9月
10月
2021年11月〜
出版物出版物
新刊図書新刊図書 月刊 化学物質管理Gmpeople
通信教育講座通信教育講座
LMS(e-learning)LMS(e-learning)
セミナー収録DVDDVD
電子書籍・学習ソフトDVD
セミナー講師のコラムです。講師コラム
  ↑2021/8/4更新!!
お申し込み・振込み要領お申込み・振込要領
案内登録案内登録
↑ ↑ ↑
新着セミナー、新刊図書情報をお届けします。

※リクエスト・お問合せ等
はこちら→ req@johokiko.co.jp



SSL GMOグローバルサインのサイトシール  



Zoom見逃し視聴あり

オンライン受講/見逃視聴なし → 

オンライン受講/見逃視聴あり → 

○知っておくべき基礎から、オートエンコーダ、GAN、Deep SVDDなど様々な手法を用いたアプローチ、データの集め方や性能評価、深層学習の判断根拠など具体的な導入・運用法、最新手法まで。

ディープラーニングによる異常検知の基礎と応用

〜サンプルがない/少ない場合のアプローチから

現場への導入・評価法まで〜

<Zoomによるオンラインセミナー・見逃し配信あり>

講師

岐阜大学 工学部 電気電子・情報工学科情報コース 教授 加藤 邦人 先生

講師紹介

■ご略歴:
 1996年中京大院情報科学研究科修士課程修了.現在,岐阜大学工学部准教授.2011年米国メリーランド大学Faculty Staff.2019年岐阜大学人工知能研究推進センターセンター長。画像処理,コンピュータビジョンの研究に従事.多数の企業との共同研究をとおし、ディープラーニングの実応用の研究を行う。電子情報通信学会,電気学会,精密工学会会員.博士(情報認知科学).

■ご専門および得意な分野・研究:
コンピュータビジョン、画像認識、ディープラーニング

■本テーマ関連学協会でのご活動:
・画像センシング技術研究会組織委員会ステアリングコミッティ委員長
・精密工学会画像応用技術専門委員会副委員長


日時・会場・受講料

●日時 2021年10月8日(金) 10:30-16:30 *途中、お昼休みや小休憩を挟みます。

●受講料
 【オンライン:見逃し視聴なし】:1名47,300円(税込(消費税10%)、資料付)
 *1社2名以上同時申込の場合、1名につき36,300円

 【オンライン:見逃し視聴あり】:1名52,800円(税込(消費税10%)、資料付)
 *1社2名以上同時申込の場合、1名につき41,800円

 *学校法人割引;学生、教員のご参加は受講料50%割引。→「セミナー申込要領・手順」を確認下さい。


■ セミナーお申込手順からセミナー当日の主な流れ →

配布資料・講師への質問等について

●配布資料はPDF等のデータで送付予定です。受取方法はメールでご案内致します。
 (開催1週前〜前日までには送付致します)。
*準備の都合上、開催1営業日前の12:00までにお申し込みをお願い致します。
(土、日、祝日は営業日としてカウント致しません。)

●当日、可能な範囲で質疑応答も対応致します。
(全ての質問にお答えできない可能性もございますので、予めご容赦ください。)
●本講座で使用する資料や配信動画は著作物であり
 無断での録音・録画・複写・転載・配布・上映・販売等を禁止致します。
●受講に際しご質問・要望などございましたら、下記メールにてお問い合わせ下さい。 req@johokiko.co.jp

※本講座は、お手許のPCやタブレット等で受講できるオンラインセミナーです。

下記ご確認の上、お申込み下さい(クリックして展開「▼」:一部のブラウザーでは展開されて表示されます)
・PCもしくはタブレット・スマートフォンとネットワーク環境をご準備下さい。
・ご受講にあたり、環境の確認をお願いしております(20Mbbs以上の回線をご用意下さい)。
 各ご利用ツール別の、動作確認の上お申し込み下さい。
・開催が近くなりましたら、当日の流れ及び視聴用のURL等をメールにてご連絡致します。開催前日(営業日)の12:00までにメールが届かない場合は必ず弊社までご一報下さい。
・その他、受講に際してのご質問・要望などございましたら、下記メールにてお問い合わせ下さい。
 <req@johokiko.co.jp>

Zoom
Zoomを使用したオンラインセミナーとなります(クリックして展開「▼」)
・ご受講にあたり、環境の確認をお願いしております。
 お手数ですが下記公式サイトからZoomが問題なく使えるかどうか、ご確認下さい。
 → 確認はこちら
 *Skype/Teams/LINEなど別のミーティングアプリが起動していると、Zoomでカメラ・マイクが使えない事があります。お手数ですがこれらのツールはいったん閉じてお試し下さい。
 →音声が聞こえない場合の対処例

・Zoomアプリのインストール、Zoomへのサインアップをせずブラウザからの参加も可能です
 →参加方法はこちら
 →※一部のブラウザーは音声(音声参加ができない)が聞こえない場合があります、
   必ずテストサイトからチェック下さい。
   対応ブラウザーについて(公式);コンピューターのオーディオに参加に対応してないものは音声が聞こえません

見逃し視聴あり
申込み時に(見逃し視聴有り)を選択された方は、見逃し視聴が可能です。
(クリックして展開「▼」)
・原則、開催5営業日後に録画動画の配信を行います(一部、編集加工します)。
・視聴可能期間は配信開始から1週間です。
 セミナーを復習したい方、当日の受講が難しい方、期間内であれば動画を何度も視聴できます。
 尚、閲覧用URLはメールでご連絡致します。
 ※万一、見逃し視聴の提供ができなくなった場合、
 (見逃し視聴あり)の方の受講料は(見逃し視聴なし)の受講料に準じますので、ご了承下さい。

 →こちらから問題なく視聴できるかご確認下さい(テスト視聴動画へ)パスワード「123456」


セミナー開催にあたって

■はじめに:
 近年、ディープラーニングによる画像認識は目覚ましい発展を遂げており、これらの成果は実利用の段階に入った。工場などの生産現場では、古くから画像認識による外観検査や異常検知が導入されているが、これらにディープラーニングを導入することで飛躍的な精度の向上を行った事例が報告されつつある。一方で、ディープラーニングを外観検査に応用する場合には、外観検査、異常検知ゆえの問題がある。本セミナーでは、ディープラーニングの基礎から、異常検知の考え方、異常検知の問題点、異常サンプルがない場合と、少量のサンプルがある場合でのアプローチ、最新手法、ネットワークの評価方法についての講演を行う。

■受講対象者:
・製造現場などで異常検知、外観検査に深層学習を導入したい方
・クラス分類ではない、異常検知の考え方、知見を得たいと考えている方
・現場導入に際し、データの集め方、性能の評価の仕方の知識を得たい方

など、これから自社で外観検査システム、異常検知システムを構築したい、もしくはそれらの考え方を知りたい受講者を対象とし、ある程度の数学の知識や情報工学の基礎知識程度を持っていれば理解できるような講演内容とします。
 基本は画像認識を対象として講演を行いますが、信号、音声などの1次元情報についても応用できるよう講演を行います。

■事前に目を通しておくと更に理解が深まる書籍:*閲覧必須ではありません。
書籍「イラストで学ぶ ディープラーニング」(山下隆義著、KS情報科学専門書、2018/11)

■本セミナーで習得できること:
・ディープラーニングの基礎知識
・異常検知の考え方と、その技術
・最新の異常検知手法
・現場への導入法、評価方法
など

セミナー内容

1.特徴量と特徴空間
 1.1 特徴量とは
 1.2 特徴空間
 1.3 クラスの概念

2.識別問題
 2.1 識別問題とは
 2.2 線形識別法
 2.3 異常検知の考え方

3.ニューラルネットワークの基礎
 3.1 単純パーセプトロン
 3.2 3層ニューラルネットワーク
 3.3 畳み込みニューラルネットワーク

4.異常サンプルがない場合の方法
 4.1 オートエンコーダ
  4.1.1 オートエンコーダの基礎
  4.1.2 畳み込みオートエンコーダ
  4.1.3 オートエンコーダの復元による異常検知
 4.2 Generative Adversarial Networks
  4.2.1 GANの基礎
  4.2.2 GANによる異常検知
 4.3 Deep SVDD
  4.3.1 Deep SVDDの基礎
  4.3.2 Deep SVDDによる異常検知
  4.3.3 オートエンコーダ+Deep SVDD

5.異常サンプルが少量ある場合の方法
 5.1 Adversarial Auto Encoderを用いた異常検知

6.最新異常検知手法

7.運用方法

 7.1 データの集め方とデータの重要性
 7.2 データ拡張
 7.3 異常検知手法の選択方法
 7.4 異常検知における性能評価(Confusion matrix、ROCカーブとAUC、性能評価法)
 7.5 深層学習の判断根拠

8.ディープラーニングによる異常検知による実例と諸問題

<質疑応答>

■ご講演中のキーワード:

ディープラーニング、異常検知、CNN、オートエンコーダー、GAN、Deep SVDD、性能評価

セミナー番号:AD211001

top

会社概要 プライバシーポリシー 通信販売法の定めによる表示 商標について リクルート
Copyright ©2011 情報機構 All Rights Reserved.