機械学習 セミナー Python ディープラーニング 人工知能 AI

サイトマップサイトマップ よくあるお問合わせよくあるお問合せ リクエストリクエスト セミナー会場セミナー会場へのアクセス リンクリンク
セミナーのメニュー
  ヘルスケア系
ライブ配信
1月
2月
3月
2021年4月〜

化学・電気系 その他各分野
ライブ配信
1月
2月
3月
2021年4月〜
出版物出版物
新刊図書新刊図書 月刊 化学物質管理Gmpeople
通信教育講座通信教育講座
LMS(e-learning)LMS(e-learning)
セミナー収録DVDDVD
電子書籍・学習ソフトDVD
セミナー講師のコラムです。講師コラム
  ↑2021/1/13更新!!
お申し込み・振込み要領お申込み・振込要領
案内登録案内登録
↑ ↑ ↑
新着セミナー、新刊図書情報をお届けします。

※リクエスト・お問合せ等
はこちら→ req@johokiko.co.jp



SSL GMOグローバルサインのサイトシール  



Zoom


★必要な前提知識からディープラーニングの手法、実際に動かす時の課題など・・
★手を動かして理解を深めながら学べるセミナーです!
★機械学習の基礎実習セミナーとのお得なセット割引もございます。

TensorFlowで学ぶ
ディープラーニングと応用【PC実習付き】
(定員20名)

<Zoomによるオンラインセミナー>

講師

明治大学 総合数理学部 ネットワークデザイン学科 准教授 櫻井 義尚 先生

講師紹介

■ご略歴:
 2000年 電気通信大学電気通信学部電子情報学科卒業
 2002年 同大学大学院電気通信学研究科電子情報学専攻博士前期課程修了
 2005年 同博士後期課程単位取得済み退学.同年博士(工学)
 2005年4月〜 東京電機大学情報環境学部情報環境学科助手
 2010年4月〜 東京電機大学情報環境学部情報環境学科助教
 2013年4月〜 明治大学総合数理学部ネットワークデザイン学科 准教授

■専門および得意な分野・研究:
 機械学習、データマイニング、進化計算、レコメンダーシステム、マーケティング調査分析、テキストマイニング、意思決定支援システム

■本テーマ関連学協会での活動:
 情報処理学会、人工知能学会、日本オペレーションズ・リサーチ学会、日本知能情報ファジィ学会、電気学会、進化計算学会、日本マーケティング学会、IEEE

→このセミナーを知人に紹介する

日時・会場・受講料

●日時 2021年2月26日(金) 10:30-17:00
●本講座は機械学習継続セミナー(全3回/オンライン)の第3回として開催いたします。
 < 全3回のラインナップ >
 ・第1回:2/3  『深層学習(ディープラーニング)の基本的な原理を理解しよう
 ・第2回:2/25 『【PC実習付き】PythonとScikit-learnで学ぶ機械学習の基礎(定員20名)
 ・第3回:2/26 『【PC実習付き】TensorFlowで学ぶディープラーニングと応用(定員20名)』

■受講料(税込(消費税10%)、資料付)
参加形態区分価格(税込)1社2名以上同時申込
1講座のみの参加1回のみ、2回のみ、3回のみ47,30036,300
2講座の参加1・2回、1・3回、2・3回72,60061,600
全講座(3講座)の参加1・2・3回92,40081,400
※PC貸出希望7,700/回

※申込時に参加形態(第○・○回参加)を備考覧に記載下さい。
※実習講座で弊社PCの使用を希望される際にも、備考覧に記載をお願い致します。
※各回、別の方が受講いただくことも可能です。
※1社2名以上同時申込は、同時申込、同形態(講座数、参加日)でのお申込にのみ有効です

学校法人割引;学生、教員のご参加は受講料50%割引。→「セミナー申込要領・手順」を確認下さい。
(PC貸出料は50%割引対象外となります)

*全3回申込の方へ
・不測の事態により、全回開催出来ない場合、以下規定に基づき、返金致します。

  全3回中、1回実施の場合: 70%返金
  全3回中、2回実施の場合: 40%返金

 ●録音・撮影行為は固くお断り致します。


■ セミナーお申込手順からセミナー当日の主な流れ →

配布資料・講師への質問等について

●配布資料は、印刷物を郵送で送付致します。
 お申込の際はお受け取り可能な住所をご記入ください。
 お申込みは4営業日前までを推奨します。
 それ以降でもお申込みはお受けしておりますが(開催1営業日前の12:00まで)、
 テキスト到着がセミナー後になる可能性がございます。


●当日、可能な範囲で質疑応答も対応致します。
(全ての質問にお答えできない可能性もございますので、予めご容赦ください。)
●本講座で使用する資料や配信動画は著作物であり
 無断での録音・録画・複写・転載・配布・上映・販売等を禁止致します。
●受講に際しご質問・要望などございましたら、下記メールにてお問い合わせ下さい。 req@johokiko.co.jp


※本講座は、お手許のPCやタブレット等で受講できるオンラインセミナーです。

下記ご確認の上、お申込み下さい(クリックして展開「▼」:一部のブラウザーでは展開されて表示されます)
・PCもしくはタブレット・スマートフォンとネットワーク環境をご準備下さい。
・ご受講にあたり、環境の確認をお願いしております(20Mbbs以上の回線をご用意下さい)。
 各ご利用ツール別の、動作確認の上お申し込み下さい。
・開催が近くなりましたら、当日の流れ及び視聴用のURL等をメールにてご連絡致します。開催前日(営業日)の12:00までにメールが届かない場合は必ず弊社までご一報下さい。
・その他、受講に際してのご質問・要望などございましたら、下記メールにてお問い合わせ下さい。
 <req@johokiko.co.jp>

Zoom
Zoomを使用したオンラインセミナーとなります(クリックして展開「▼」)
・ご受講にあたり、環境の確認をお願いしております。
 お手数ですが下記公式サイトからZoomが問題なく使えるかどうか、ご確認下さい。
 → 確認はこちら
 *Skype/Teams/LINEなど別のミーティングアプリが起動していると、Zoomでカメラ・マイクが使えない事があります。お手数ですがこれらのツールはいったん閉じてお試し下さい。
 →音声が聞こえない場合の対処例

・Zoomアプリのインストール、Zoomへのサインアップをせずブラウザからの参加も可能です
 →参加方法はこちら
 →※一部のブラウザーは音声(音声参加ができない)が聞こえない場合があります、
   必ずテストサイトからチェック下さい。
   対応ブラウザーについて(公式);コンピューターのオーディオに参加に対応してないものは音声が聞こえません

セミナーポイント

■受講者の方へ:演習用PCご用意のお願い
 ・本セミナーでは、PC演習を行います。
  インストールして頂きたいツール等はお申込み完了後・開催確定後にご連絡差し上げます。
 ・ご用意が難しい場合は、お申込み時に選択欄から『PC貸出』を選択ください。
  7,700円(税込)にて貸出致します。
 ・PCの貸出は原則として1週間前までにお申し出ください。

■はじめに:
 過去の情報に基づいて顧客の行動を予測したり、これまで人手を要していた分類作業を自動化したり、機械学習はビジネス上の様々な場面で活用できる強力なツールになります。
 本セミナーでは、「これから自分で機械学習(ライブラリを使った)プログラムを作りたい」機械学習の初学者を対象に、機械学習の基礎を解説しつつ、機械学習ライブラリを使ったPythonのサンプルプログラムを実際に実行し、ソースコードの解説を通して、機械学習プログラムがどのように作られているかを学びます。

■ご講演中のキーワード:
 SVM、k-means、ニューラルネットワーク、ディープラーニング、特徴量、Python、scikit-learn

■受講対象者:
 ・Pythonを動かしてみたい方
 ・機械学習を活用したい方
 ・Pythonを使った機械学習システムの構築を目指している方

■必要な予備知識:
【プログラミングについて】
 ・簡単なパソコンの使い方(ファイル操作など)
 ・Pythonでなくともいいので、何かしらのプログラミング経験があることが望ましい。
【機械学習について】
 この分野に興味のある方なら、特に必要ありませんが、大学初学年程度の数学の知識(ベクトル・行列・統計)があった方がより深く理解できます。

■本セミナーで習得できること:
 ・機械学習の基礎知識
 ・機械学習システム構築についての基礎知識
 ・機械学習ライブラリを用いたPythonプログラミングの基礎
 ・機械学習の代表的な手法の理解
 ・ディープラーニングの基礎知識

★過去、本セミナーを受講された方の声(一例):
 ・独学では限界があったので要点をわかりやすく教えていただきありがとうございました。とてもためになりました。
 ・全体の概要は理解できたので復習して理解を深めます。
 ・内容、進め方、スピードどれも非常に良かったと思います
 ・説明が丁寧でわかりやすくしていただいたのでよく理解できました。
 ・関数の特徴、Tipsが多くわかりやすかった。質疑応答がよかった。

セミナー内容

1.ニューラルネットワーク
 1)人工ニューロン
  ・パーセプトロン
 2)ロジスティック回帰
  ・活性化関数
  ・誤差関数
  ・最適化問題
 3)機械学習ライブラリを用いたプログラム(scikit-learn)
 4)マルチクラス分類
  ・ソフトマックス関数
 5)多層パーセプトロンMLP
  ・誤差逆伝搬法
 6)TensorFlowによるプログラミング

2.ディープラーニング
 1)ディープラーニング
  a)ディープラーニングとは
   1.特徴量とは
   2.特徴量抽出の意味する事
  b)ディープラーニングのプログラムを作るには
 2)ディープニューラルネットワーク(DNN)
  ・TensorFlowによるプログラミング
 3)ディープラーニングの課題と解決策
  ・勾配消失問題
  ・様々な活性化関数
  ・オーバーフィッティング問題
  ・ドロップアウト
 4)ディープラーニングの手法
  ・リカレントニューラルネットワーク(RNN)
  ・畳み込みニューラルネットワーク(CNN)
 5)応用事例紹介
 
3.実際の機械学習システム構築での課題
 1)データをどこから持ってくるのか
 2)ネットのデータを集めるには(スクレイピング)
 3)urllibライブラリ
 4)HTMLやXMLを解析するBeautifulSoupライブラリ
 5)CSSセレクタ
 6)Web APIからのデータ取得

セミナー番号:AQ210243

top

注目の新刊

雑誌 月刊化学物質管理

プライバシー・マネジメント

国内外食品衛生法規

タッチレス化/非接触化

マテリアルズ
・インフォマティクス


ドローン

寺子屋統計教室

Spice回路シミュレータ

分野別のメニュー

化学・電気系他分野別一覧

  植物工場他

  機械学習他

ヘルスケア系分野別一覧

  海外関連

  医療機器

各業界共通
マーケティング・人材教育等

「化学物質情報局」

特許・パテント一覧 INDEX
(日本弁理士会 継続研修)

印刷用申込フォーム    

セミナー用

書籍用

会社概要 プライバシーポリシー 通信販売法の定めによる表示 商標について リクルート
Copyright ©2011 情報機構 All Rights Reserved.