・ご受講にあたり、環境の確認をお願いしております。
お手数ですが下記公式サイトからZoomが問題なく使えるかどうか、ご確認下さい。
→
確認はこちら
*Skype/Teams/LINEなど別のミーティングアプリが起動していると、Zoomでカメラ・マイクが使えない事があります。お手数ですがこれらのツールはいったん閉じてお試し下さい。
→
音声が聞こえない場合の対処例
・Zoomアプリのインストール、Zoomへのサインアップをせずブラウザからの参加も可能です
→
参加方法はこちら
→※一部のブラウザーは音声(音声参加ができない)が聞こえない場合があります、
必ず
テストサイトからチェック下さい。
対応ブラウザーについて(公式);コンピューターのオーディオに参加に対応してないものは音声が聞こえません
申込み時に(見逃し視聴有り)を選択された方は、見逃し視聴が可能です。
(クリックして展開「▼」)
・原則、開催5営業日後に録画動画の配信を行います(一部、編集加工します)。
・視聴可能期間は配信開始から1週間です。
セミナーを復習したい方、当日の受講が難しい方、期間内であれば動画を何度も視聴できます。
尚、閲覧用URLはメールでご連絡致します。
※万一、見逃し視聴の提供ができなくなった場合、
(見逃し視聴あり)の方の受講料は(見逃し視聴なし)の受講料に準じますので、ご了承下さい。
→こちらから問題なく視聴できるかご確認下さい(テスト視聴動画へ)パスワード「123456」
セミナーポイント
■講座のポイント
Pythonは現在流行のプログラミング言語で、これをマスターするだけでも仕事に困らないと言われています。また、オフィスワーク、医療、金融と様々な分野で活用されており、エンジニアを目指す方以外にも勉強しておいて必ず役に立つツールです。さらに、病態の予測や株式の予測のような複雑な予測は、機械学習によりある程度可能になってきております。
本講座では、先ずPythonの基礎を学びます。初めての方でも、インストール方法含めわかりやすく解説します。次いで、機械学習における教師あり学習(分類問題と回帰問題)および教師なし学習(次元圧縮およびクラスター解析)についてExcelおよびPythonを使ってわかりやすく紹介します。ソースコードもご希望により配布しますので、すぐに実践することが可能です。是非この機会に講座への参加をお待ちしております。
■受講後、習得できること
・Pythonの基礎
・機械学習・教師あり学習(分類)
・機械学習・教師あり学習(回帰)
・機械学習・教師なし学習(次元圧縮、クラスタリング)
・深層学習の基礎
■講演中のキーワード
・Python
・Jupyter Notebook
・機械学習
・分類と回帰
・深層学習
セミナー内容
1. 機械学習の基礎知識
(1)機械学習とは
(2)Pythonと機械学習
(3)環境構築
a. OSとフレームワーク
b. CPUとGPU
c. NumPy
d. matplotlib
e. scikit-learn
f. Jupiter
g. Anacondaのインストール
h. Pythonの実行
2. 分類問題
(1)分類問題とは
a. 学習テストとテストセット
b. ホールドアウトと交差検証
c. k-分割交差検証
d. 正答率・適合率・再現率・F値・ROC曲線下面積
(2)いろいろな分類器
a. 決定木
b. Random Forest
c. AdaBoost
d. Naive Bayes
e. サポートベクターマシン(SVM)
f. 薬物動態データでの適用事例
3. 回帰問題
(1)回帰問題の基礎
a. 最小二乗法
b. 線形単回帰
c. 線形重回帰
4. 次元圧縮
(1)次元の呪い
a. 過学習
b. 情報量規準
(2)次元圧縮
a. 主成分分析
b. 主成分得点・固有値・因子負荷量
5. クラスタリング
(1)階層的クラスタリング手法
a. Excelによる最短距離法
b. Excelによるウォード法
(2)非階層的クラスタリング手法
a. k-means法
b. 自己組織化マップ
c. scikit-learnを用いたデータのクラスタリング
6. 深層学習
(1)機械学習から発展した深層学習
a. 畳み込みニューラルネットワーク(CNN)
b. 再帰型ニューラルネットワーク(RNN)
c. 物体検出
7. おわりに
<質疑応答>