サイトマップサイトマップ よくあるお問合わせよくあるお問合せ リクエストリクエスト セミナー会場セミナー会場へのアクセス
セミナーのメニュー
  ヘルスケア系
ライブ配信
9月
10月
11月
2021年12月〜

化学・電気系 その他各分野
ライブ配信
9月
10月
11月
2021年12月〜
出版物出版物
新刊図書新刊図書 月刊 化学物質管理Gmpeople
通信教育講座通信教育講座
LMS(e-learning)LMS(e-learning)
セミナー収録DVDDVD
電子書籍・学習ソフトDVD
セミナー講師のコラムです。講師コラム
  ↑2021/9/10更新!!
お申し込み・振込み要領お申込み・振込要領
案内登録案内登録
↑ ↑ ↑
新着セミナー、新刊図書情報をお届けします。

※リクエスト・お問合せ等
はこちら→ req@johokiko.co.jp



SSL GMOグローバルサインのサイトシール  



Zoom

★ベイズ統計の基本、一般化線形モデル、状態空間モデル。


ベイズ統計モデリングによるデータ分析入門

<Zoomによるオンラインセミナー>

講師

Logics of Blue 馬場 真哉 先生

講師紹介

■主経歴
2014年4月-2017年6月 IT企業にて生産管理システムの開発などに従事。
2017年7月-現在 独立し、データ分析支援や、書籍の執筆などに従事。

■主要著書
・平均・分散から始める一般化線形モデル入門(2015)
・時系列分析と状態空間モデルの基礎:RとStanで学ぶ理論と実装(2018)
・Pythonで学ぶあたらしい統計学の教科書(2018)
・RとStanではじめる ベイズ統計モデリングによるデータ分析入門(2019)
・R言語ではじめる プログラミングとデータ分析(2020)
・意思決定分析と予測の活用 基礎理論からPython実装まで(2021)

■専門・得意分野
・数理統計学の理論と応用
・統計的意思決定理論とオペレーションズ・リサーチ


日時・会場・受講料

●日時 2021年11月16日(火) 10:00-16:30
●会場 ※会場での開催は行いません
●受講料 1名47,300円(税込(消費税10%)、資料付)
 *1社2名以上同時申込の場合、1名につき36,300円
      *学校法人割引;学生、教員のご参加は受講料50%割引。→「セミナー申込要領・手順」を確認下さい。

●録音・録画行為は固くお断り致します。


■ セミナーお申込手順からセミナー当日の主な流れ →

配布資料・講師への質問等について

●配布資料はPDF等のデータで送付予定です。受取方法はメールでご案内致します。
 (開催1週前〜前日までには送付致します)。
*準備の都合上、開催1営業日前の12:00までにお申し込みをお願い致します。
(土、日、祝日は営業日としてカウント致しません。)

●当日、可能な範囲で質疑応答も対応致します。
(全ての質問にお答えできない可能性もございますので、予めご容赦ください。)
●本講座で使用する資料や配信動画は著作物であり
 無断での録音・録画・複写・転載・配布・上映・販売等を禁止致します。
●受講に際しご質問・要望などございましたら、下記メールにてお問い合わせ下さい。 req@johokiko.co.jp

※本講座は、お手許のPCやタブレット等で受講できるオンラインセミナーです。

下記ご確認の上、お申込み下さい(クリックして展開「▼」:一部のブラウザーでは展開されて表示されます)
・PCもしくはタブレット・スマートフォンとネットワーク環境をご準備下さい。
・ご受講にあたり、環境の確認をお願いしております(20Mbbs以上の回線をご用意下さい)。
 各ご利用ツール別の、動作確認の上お申し込み下さい。
・開催が近くなりましたら、当日の流れ及び視聴用のURL等をメールにてご連絡致します。開催前日(営業日)の12:00までにメールが届かない場合は必ず弊社までご一報下さい。
・その他、受講に際してのご質問・要望などございましたら、下記メールにてお問い合わせ下さい。
 <req@johokiko.co.jp>

Zoom
Zoomを使用したオンラインセミナーとなります(クリックして展開「▼」)
・ご受講にあたり、環境の確認をお願いしております。
 お手数ですが下記公式サイトからZoomが問題なく使えるかどうか、ご確認下さい。
 → 確認はこちら
 *Skype/Teams/LINEなど別のミーティングアプリが起動していると、Zoomでカメラ・マイクが使えない事があります。お手数ですがこれらのツールはいったん閉じてお試し下さい。
 →音声が聞こえない場合の対処例

・Zoomアプリのインストール、Zoomへのサインアップをせずブラウザからの参加も可能です
 →参加方法はこちら
 →※一部のブラウザーは音声(音声参加ができない)が聞こえない場合があります、
   必ずテストサイトからチェック下さい。
   対応ブラウザーについて(公式);コンピューターのオーディオに参加に対応してないものは音声が聞こえません

セミナーポイント

■講座のポイント
 ベイズ統計モデリングによるデータ分析は、データを柔軟に分析することを可能としました。本セミナーでは、ベイズ統計モデリングの基礎理論をおさらいしたうえで、一般化線形モデル(GLM)と状態空間モデル(SSM)を中心に解説します。
 GLMは、古典的な回帰分析を拡張したものです。個数データや比率データなどを柔軟にモデル化できます。SSMは時系列データを分析するときにしばしば使われるモデルです。季節やトレンドの構造を柔軟に表現できます。両者を学ぶことで、様々なデータに対してモデルを作って分析を行うことができるようになります。
 初等的な統計学の用語(期待値・分散・区間推定・回帰分析など)と確率論の基礎用語(確率の加法定理・確率の乗法定理など)については、説明を省略することがあります。
 MCMCのアルゴリズムなど理論的な詳細にあまり時間をかけない代わりに、ベイズ統計モデリングの大枠をつかんでいただくことを目標とします。またRとStanを使った実装コードをあわせて紹介します。具体的な分析を講師のPCで実演することで、データ分析のイメージをつかんでいただきます。

■受講後、習得できること
・ベイズ統計モデリングの基礎理論
・R言語とStanを用いた分析方法
・一般化線形モデル(GLM)によるデータの解釈と予測
・状態空間モデル(SSM)によるデータの解釈と予測

セミナー内容

1.はじめに
2.ベイズ統計モデリングの基本
 2.1 統計学と確率分布
 2.2 ベイズ統計モデリングの概要
 2.3 確率モデルの設計事例
 2.4 ベイズ推論の基本
 2.5 MCMCの基本
3.一般化線形モデル
 3.1 回帰分析の復習
 3.2 一般化線形モデルの基本
 3.3 ポアソン回帰モデル
 3.4 ロジスティック回帰モデル
 3.5 一般化線形混合モデル
4.状態空間モデル
 4.1 状態空間モデルの基本
 4.2 ホワイトノイズとランダムウォーク
 4.3 ローカルレベルモデル
 4.4 時変係数モデル
 4.5 トレンドの構造
 4.6 周期性のモデル化
 4.7 正規分布以外の確率分布を用いた状態空間モデル

(質疑応答)

セミナー番号:AF211172

top

会社概要 プライバシーポリシー 通信販売法の定めによる表示 商標について リクルート
Copyright ©2011 情報機構 All Rights Reserved.