講師コラム

サイトマップサイトマップ よくあるお問合わせよくあるお問合せ リクエストリクエスト セミナー会場セミナー会場へのアクセス リンクリンク
セミナーのメニュー
  ヘルスケア系
12月
2019年1月
2月
3月〜

化学・電気系 その他各分野
12月
2019年1月
2月
3月〜
出版物出版物
新刊図書新刊図書 月刊 化学物質管理Gmpeople
通信教育講座通信教育講座
セミナー収録DVDDVD
電子書籍・学習ソフトDVD
セミナー講師のコラムです。講師コラム
  ↑2018/12/5更新!!
お申し込み・振込み要領お申込み・振込要領
案内登録案内登録
↑ ↑ ↑
新着セミナー、新刊図書情報をお届けします。

※リクエスト・お問合せ等
はこちら→ req@johokiko.co.jp



SSL GMOグローバルサインのサイトシール  


講師コラム:佐野 茂 氏


『 電池特にEV用電池の最新事情 
リチウムイオン電池・次世代電池の課題を解決する
新規な電池理論
 



コラムへのご意見、ご感想がありましたら、こちらまでお願いします。

第3回(2018/12/5)



1)はじめに:名古屋弁「しぶちがする。もうやっこする。」

 前回書き忘れました。電池工業会のホームページから引用します。1986年に旧日本乾電池工業会が11月11日を「電池の日」と制定しました。11月11日を漢字で書くと、+(プラス)−(マイナス)+(プラス)−(マイナス)となり、電池の正負極を表すことからです。では、12月12日は何の日でしょう。1985年に旧日本蓄電池工業会が制定しました。野球のバッテリーの守備位置が数字で、1,2と表されることからです。今年の最優秀バッテリーは、セが広島・大瀬良/曾澤、パが西武・多和田/森と決まったようです。両日の間を「電池月間」と呼んでいます。
 紅葉が終わりストーブのお世話になっています。この季節、愛知県西部(小牧、江南、一宮)では独特の言葉があります。どんよりとした曇り空の下で子供が遊んでいると、お母さんが(最近はおばあさんだけです)「しぶちがするから家に入りなさい」と声を掛けます。琵琶湖の水蒸気を含んだ冷たい西風が、伊吹山を越えて旧中山道の米原・大垣を経由して能美平野に流れ込み、非常に弱い小雨が降ります。みぞれが降り出すと「しぶちがする」とは言いません。「しぶち」の語源を伺うと、雨の降り方がいかにも貧乏臭く「しぶちん」をイメージするからだろうという答えが返ってきました。「〜が降る」ではなく「〜がする」の表現が不思議です。この地方独特の人柄・気候をよく表していると面白く聞いています。
 一言で名古屋弁と言っても、愛知県西部尾張弁、名古屋市名古屋弁、愛知県東部三河弁の3種があります。私は最初小牧に住んでいて、近所の畑を耕していた90歳のお婆さんに指導を受けたので、尾張弁を良く知っています。検索すれば意味は解り標準語に言い換えられるが、標準語を想像しにくい言葉があります。

あかる、えらい、おうちゃくい、かした、くろ、黒にえ、コロ、ざら板、
だだくさ、つる、はばにする、ばりかく、ぼう、まわしといて、めんぼ、やっとかめだなあ、等々
 

 私が一番気に入っている方言は、「もうやっこする」と言う表現です。標準語では言い換えることが出来ません。お母さんが子供達に「もうやっこしなさい」と言います。おもちゃを皆で仲良く遊びなさい。おやつを分け合って食べなさい。と言うような意味です。可愛らしく、素敵な言葉と感心しています。最近の若い人は方言を使わなくなって来ているので、これら素敵な方言も死語になりつつあります。宴席で若い人に手帳を開いてこれらの言葉を尋ねると、名古屋出身者でも知らない人がいて、結構盛り上がります。
 やはり宴席で「充電」が話題になった時に、若い人から「電池の充電は知らない」と言われ驚きました。よくよく聞くと携帯電話は毎日充電しているそうで、大笑いしました。乾電池は解るようですが、2次電池が携帯電話に内蔵されていることは知らないようです。電池が偉大な縁の下の力持ちであること、充電作業が本当に身近になっていることに変な気持ちで感心しました。最近のサムソン製携帯電話ギャラクシは電池容量を前面に打ち出してPRしています。電池の高容量化が携帯電話では競争の本丸になりそうです。
 もちろんEV用も!

2)電池及びリチウムイオン電池の概説:充電曲線

 前回の文章で誤解を呼んでしまいました。
 OCVとCCVとの電圧差a、bは、IRドロップと過電圧の和です。高率・低温放電時の大幅な容量減の理由にはならないと記載しました。この過電圧については、KT大AB教授が丁寧な研究をされており、脱溶媒過程が主因であると言う結論を導き出しています。過電圧は電池の評価・解析には非常に重要な値です。
 予定をしていなかったのですが、最近ある電池技術者と話す機会があり、抵抗・過電圧についての考え方・測定方法を誤解しているように思いましたので、急遽解説を加えることにしました。当然ながら電圧は電圧計で測りますが、電流が流れていない時のOCVと電流が流れている時のCCVがあり、その差が電池設計では非常に重要です。一般に抵抗は、オームの法則<電圧=電流×抵抗>に従うと思われていますが、OCVとCCVとの差はオームの法則には従わないので、内部抵抗と言う方は大きな誤解を生むことになります。直流通電を遮断した瞬間にOCVに向かう方向に変化をします。充電なら低く、放電なら高くなります。この瞬間の電圧降下を前回IRドロップと呼びましたが、このIRドロップは電子抵抗とイオン移動抵抗の和です。オームの法則に従わないOCVとCCVとの差である全電圧降下分を適切に表現でき、定義された用語を知りません。私は便宜的に、内部抵抗とは違うと言う意味で、内部インピーダンスと言う造語をし、解説をすることがあります。しかし、交流インピーダンス法と言う定義された測定方法と混乱する可能性があるので、慎重に使う必要があります。
 電圧降下分(内部インピーダンス)=内部抵抗(電子抵抗+イオン移動抵抗)×電流+過電圧
 通電電流を遮断し電圧変化を測定する直流遮断法で測定した「直後の」電圧降下には電極反応過電圧は含まれていません。交流抵抗計は電池抵抗を測るのに非常な便利な測定器ですが、1kHzの交流での交流抵抗を測定しており、この周波数、つまり1ms印加では、電子抵抗、イオン移動抵抗、電気2重層の充電の一部が測定できますが、電極反応の過電圧は測定できません。電池メーカーの製造ラインの品質管理項目では、測定の簡便さから交流抵抗計が頻繁に使われていますが、電極反応過電圧は全く計れていないので、電池の設計段階ではそのことを十分に理解した上で利用することが重要です。電極反応過電圧を正しく理解し測定せずに、安易に交流測定に頼って設計をするようなことがあれば、必ず不良品を出荷し、最悪破裂発火の事故を引き起こすことになります。
 通電遮断後、回復過渡電圧(TRV=Transient Recovary Voltage)を経てOCVに戻ります。安定になるには、数秒から数時間かかります。電極電位は電解液の濃度分布、電極活物質中の反応種の濃度分布に依存します。充電条件によりこれらが全ての領域で均一にはなりません。電解液の濃度差は拡散により均一化し、異なる反応種濃度の活物質間では局部電池により内部電流が流れ、徐々に均一化されます。両端子に接続した電圧計で測定される電圧は一つしかなく、その電圧は各部の内最も大きな電圧差を示す電圧が測定されると考えております。つまり、SOC40%の領域と、SOC60%の領域があるとすれば、SOC60%の電圧が計測されると言うことになります。SOC60%の領域は放電し、SOC40%の領域は充電され、全体がSOC50%に均一になります。この議論については、TR大IG教授、TK大KM准教授から今回改めてご指導をいただきました。



 充電曲線はFig.15のようになります。第1回目の充電を「初充電」として破線で描きましたが、数サイクル繰り返し安定になってからの充電曲線とは明らかに違います。充電初期に平坦部が現れ、この電圧域に該当する反応が進行していることが解ります。代表的には充電による電解液の還元分解が起き、リチウムイオンが含まれる塩が生成し、電極活物質表面に付着します。この付着物をSEI(固体電解質界面)と呼んでいます。SEIについてはいずれ詳しく解析します。水系の従来電池では、第2回目充電以降には起こらない最初の充電で起きる現象を「化成」と呼んでいます。充電とは異なる用語「化成」と呼ぶことで、SEI形成のような本来の電荷を蓄電する充電とは別の反応を明確に区別しています。リチウムイオン電池誕生の頃に、ある方から「化成とは何の事ですか?」と質問されたことがあります。「初充電」と言う用語は、2回目以降の充電との中味の違いが明確でないので「化成」と言い換えるべきと今でも思っています。このコラムでは、「化成」と言いたいのですが、「化成」と言う言葉を知らない方も多いので、現状で使われている「初充電」で統一します。初充電中に行われる副反応には非常に大きな意味があり、安易に電解液分解と解釈するのではなく、電気量などを計算して何が起こったかを考察するべきです。
 サイクル試験では一定の電気量(=電流×時間)で充電放電を繰り返す場合もありますが、通常の充電はFig.15示すように、一定電流で所定の電圧まで充電し、その後所定の電流まで小さくなった時に停止する、定電流定電圧充電(CCCV)を行います。電極内の不均一性のために所定電圧に到達していない活物質が、所定電圧に到達するまで定電圧充電を継続します。充電による電圧上昇は負極電位の影響は小さく、ほとんどは正極電位が決めています。正極活物質はリチウムイオン含有量により2Vほど変化し、その電位変化が電圧変化になります。この上限電圧を超えて充電すると、正極活物質は結晶性が低下し、構造の不安定化、最終的には酸素を放出するようになり、安全性が大きく低下します。現況の正極活物質では4.2Vを充電上限電圧としていますが、高エネルギー化にするために高電圧にする開発が進められています。
 放電後すぐに充電をせずに休止を挟む場合には、充電開始電圧は正極中のリチウムイオン量を示しているので重要なデータです。また、定電流領域から定電圧領域に変わる時点も電極性能を評価する上で大事な点です。定電圧充電に移行してからは、電池特性を考慮して決めた終止電流に到達した時に充電を終了します。充電終止電流を1/100C以下にすると電解液分解などの自己放電を促進することがあるので、時間制限もした方が良いと思います。定電圧時間を一定にするか、定電流時間も含めた全体の充電時間を一定にするかは試験の目的応じて決定することになります。
 充電制御は負極、正極個々に制御すべきですが、適当な参照電極がないので、両端電圧で制御します。参照電極測定をすれば、Fig.16のように正極・負極の電位が測定され、その差が両端の電圧となります。図のように、電圧制御は正極の電位上昇につれて両端電圧が上昇し、4.2Vで上限としてその電圧を保つように電流を減少させます。この制御により正極が過充電になることは防げています。しかし、4.2Vは両端の電圧ですから、負極がリチウム金属析出電位になっても検出することは出来ません。充電曲線だけを観察していても、負極が過充電、つまりデンドライト析出していることを見付けることはなかなか困難です。

3)次世代EV用電池:日産自動車(株)・トヨタ自動車(株)のEV用電池開発動向

 10月度の雑誌・新聞記事について紹介および私の所見を整理しました(Fig.17)。日本の自動車メーカーも、中国市場では中国メーカーの電池を搭載すべく準備を進めているようです。これらの情報を加味して次世代電池の各社開発動向について記載しますが、元来私の苦手な作業で、公知の記事からその要約をしているだけですので、真贋も明確ではなく全く自信がありません。一応私の所見を加えながら記載しますが、危ない話と思われたら飛ばして下さい。



 日本のEVメーカーでは最も実績がある日産自動車はゴーン元会長の不祥事で大騒ぎになっています。私がコメントすることはありませんが、EVリーフの販売に影響が出ないことを祈るばかりです。既にリーフは30万台以上の実績有しながら、米国テスラー社製EVとは異なり、全く火災事故による死者は出ていません。リーフも一定の確率で交通事故を起こしているはずですが、火災事故になったと言う話は聞きません。
 一方、テスラー社EVは度々火災事故になり、不幸なことに少なくとも2名の犠牲者が出ています。テスラー社は、原因は電池ではないと表明しています。もちろん私もそれを望んでいますが、両社の採用している電池の安全性には明らかに大きな差があるので、電池にも原因があるのではないかと心配しております。リーフは昨秋に正極をマンガン系から3元系に変更することで大幅な容量向上をし、一充電走行距離400kmを宣伝しています。一般の感覚では実力が7割程度、つまり300kmでしょう。この変更で、貯蔵する電気量は向上出来ましたが、安全性は明らかに低下しているので電池劣化後を心配しています。
 2007年に設立した日産自動車(株)と日本電気(株)との合弁会社AESC社=Automotive Energy Supply Corporation=がリーフ用電池を製造しています。1985年頃に三井物産(株)子会社 日本モリセル(株)が金属リチウム2次電池をカナダから輸入し、日本電信電話公社(現ドコモ)の携帯電話に搭載しました。電池メーカーYA社が技術支援・出資をしましたが、リチウム金属による短絡が発生し、発煙発火事故が多発し販売中止になりました。リチウム金属電池の販売を中止し、代わりにリチウムイオン電池の開発を始めました。その後YA社は撤退し日本電気(株)が支援・出資しました。コバルト系はグッドイナフ氏の基本特許に抵触しますが、マンガン系であれば抵触しないと可能性があるとの特許判断があり、マンガン系正極でのリチウムイオン電池開発を開始しました。現在の日本電気(株)の電池部隊の発祥です。京セラ(株)向けの携帯電話などで安全性を武器に実績を積み、日産自動車のEVに採用されました。三菱自動車の小型EVに最初に採用された電池もマンガン系でした。当時YA社でもマンガン系を選択すべきとの意見もありましたが、携帯電話では高容量を優先すべきとの意見が強くYA社はコバルト系を選択しました。マンガン系がコバルト系よりは安全である、量産時にコバルト価格は致命的であると言う選択理由は今でも通用します。昨秋に日産自動車が合弁を解消し、現在は中国系ファンドに買収されました。その結果、日本にはマンガン系技術を有している機関はなく、今後例えば自動車共有化のように市場要求・要求特性が変わり、マンガン系が最適になることがあると、マンガン系技術を有する中国が独占することになるのではないかと心配しています。なお、AESC社は、中国系資本の元に中国での工場建設などを進めることで新展開があるのかもしれません。
 日産自動車はマンガン系から3元系に変えたことで、AESC技術に頼る必要はなくなり、どこからも調達できることになりました。当面はパナ・旧サンヨーの電池が採用されると思いますが、いずれ互換性のある韓国LGケミカル社製に変わり、その後LGケミカル社中国工場または中国CATL社に移行すると予測しております。
 この辺りの調達先の変遷については、ゴーン氏の調達方針でもある国際調達、価格主義がどの程度徹底するかに因ると思います。(Fig.18)



 一方、日本ならず世界最大の自動車メーカーであるトヨタ自動車(株)が、2030年HV・PHV:450万台、EV・FCV:100万台と、EVについて数字目標を掲げたことに驚きますが、本音はHV販売ではないでしょうか?EVでは明らかに乗り遅れています。開発戦略としてはパナソニックとの協業を発表しました。自社内での開発を諦めたとも受け取れる発表でした。
 500名体制でHEV用リチウムイオン電池の開発に成功し、HEV用NiMH電池を製造している関連会社PEVE社で、HEV用リチウムイオン電池を製造し、新型プリウスに搭載しています。電池専業メーカーを凌ぐ実力を有していうので、EV用も研究開発を進め、PEVE社で製造・調達すると推定していたので非常に驚きました。パナ・旧サンヨーからの調達を増やしているようですが、自社開発のリチウムイオン電池も性能では決して見劣りしないはずですから、価格だけで決めているとすれば、技術の蓄積は出来ず電池メーカーが実質的に一つなくなったことになり非常に残念です。なお、中国で販売するEV用電池は現地CATL社に積極的に働きかけをしていると聞いています。リッチウムイオン電池の自社単独での開発は諦めましたが、パナ・サンヨーとの共同開発は続けられているので、細々ではあっても技術者の養成は出来ているのかも知れません。また、最近トヨタ自動車関連企業での電池関連の発表が数件ありましたが、トヨタ自動車本体の技術レベルからは相当差があり、発表の裏側では選択と集中が始まっているように感じております。
 パナソニック(株)との協業の共同発表記事に、次世代電池としての全固体電池の開発も協業すると書かれていました。不思議な話と良く見直すと、記者作成記事とパナソニック(株)発言にはその意味が含まれているのですが、トヨタ自動車(株)発言では不明瞭です。10年以上前にパナソニック(株)でも全固体電池を開発しており、実際に見せてもらいましたが、とても商品化できるとは思えないレベルでした。一方、トヨタ自動車(株)では特許発明者の9割が全固体電池に関する技術者であると言う調査結果もあり、全固体電池の開発は圧倒的にトヨタ自動車(株)が先行しており、パナソニック(株)との協業には価値が見いだせないと思います。全固体電池については別途調査結果をご報告申し上げます。(Fig.19)

4)新規な電池理論:片持ち論=グラファイト・カーボンナノチューブ中のリチウムイオン



 両方から引っ張られて安定に存在するという「両持ち論」を否定しました。新たに「片持ち論」を提唱します。Fig.20に示すように、充電により<負>に帯電したグラファイト片面と<正>に帯電しているリチウムイオンは静電力で引き合い<図中f3>近付こうとします。間隔が狭くなると、グラファイト中の電子とリチウムイオンの最外郭電子とが反発し合い<図中f4>離れようとします。この両者の逆方向の力が釣り合うことで、その位置で安定化します。場の揺らぎ、例えば、僅かにグラファイト壁に近付くと電子同士の反発力が大きくなり、元に戻ります。僅かに離れるとグラファイト壁とリチウムイオンとの静電引力が大きくなり、元に戻ります。このようにバランスの取れた安定な状態が保たれることになります。カーボンナノチューブの場合にも、全く同じでFig.21のようになります。円弧の何処が安定化は定めることは出来ません。
 このように、グラファイト壁、カーボンナノチューブの壁とリチウムイオンとが釣り合って安定化する現象を「片持ち論」と命名し、この状態でリチウムイオンが貯蔵されていることを「新規な電池理論」として発表しました。

5)おわりに

 第3回目で少し慣れてきましたが、逆に書こうとする意識が強すぎて、筆は進まなくなりました。新規参入の電池技術者と話をして、日常・単純に測定している電圧、抵抗について、正しく理解されていないことがあると知り、急遽「電池の電圧」・「電池の抵抗」およびその測定の基本について解説を加えました。
 長々と書きましたが、測定している電圧・抵抗は電池の何を測っているか、じっくり考えて見ることも大切だと思います。測定器で数字が出ればそれでよしとしていては、「チコちゃんに叱られますよ!」。開発競争の最中にいる方も、足元を見つめ直すことは必要でしょう。疎かにすると必ず破裂発火事故が起きます。
 充電曲線について基本的な、大事なことだけを解析しました。次回はサイクル試験について記載します。聞きかじった情報を基に、日産自動車(株)とトヨタ自動車(株)の事業戦略について記載しました。次回はGSユアサ・ボッシュとテスラーについて解析します。「両持ち論」に対する「片持ち論」を提唱・解説しました。カーボンの微細孔内に複数個のリチウムイオンが安定に存在する状態についてクラスター論が言われていますが、次回その矛盾を指摘します。
 1990年初め、リチウムイオン電池勃興期を目前にユニークな活動が進められていました。秋の電気化学会懇親会で、HS商社TG社長より昔のことを知っている人は少なくなったと言われました。今となっては技術的には何の価値もないかも知れませんが、折角コラムを書いているのですから、当時のことを記録として残してみようと言う気になりました。項目を一つ増やして、思い出すままに数回に渡り昔話を記載することにしました。紙面の無駄と思われる方は読み飛ばして下さい。なお、登場する方々に事前了解を得ていませんので、文責は全て小職にあり、ご批判は小職にお寄せ下さい。
 次回は年明けとなります。良いお歳をお過ごしください!



第2回(2018/11/15)



1)はじめに:題名「オーバー・ドライブ」

 学生時代にラリーを少しかじっていました。「オーバー・ドライブ=Over Drive」と言う題名のラリーが主役の邦画を観ました。主演は東出昌大、新田真剣佑さんです。「オーバー・ドライブ」は変速機のギア比1以下で高速時のエコ運転用ギア設定を言いますが、映画には全くその名に相応しいシーンは出て来ません。途中で色恋話が出て来て白けましたが、ラリーシーンは勝田範彦氏などが担当しスリル満点に演出されていました。ドリフト走行は見応えがあります。名古屋に赴任した15年程前、土曜夜に岐阜市金華山ドライブウェイに走りに行っていました。若者達に迷惑がられても最後尾でローリング走行を味わっていました。ある時、ブラインドカーブの出口でうずくまっている狸に出会い急停車し、車から飛び降りて後続の車両に知らせました。後続車数台が急ブレーキを踏み怒鳴っていました。ヘッドライトをスモールにすると、のこのこ動き出し、見守っていた若者達もとても喜んでいました。別れ際に若者達が「おじさん、余り飛ばすなよ」と心地好い笑顔で挨拶をして追い越していきました。執筆に当り念のためと、金華山ドライブウェイ(全長5km、所要時間?分)を明るい内に実際に走行してきました。溜まり場だった公園駐車場、手前のトイレなどは昔のままでしたが、やはり恐怖感が先に立ち膝が震えました。この映画の題名はブレーキとアクセルを同時に案配良く踏む「ヒール・アンド・トゥ」にすれば良かったのにと思いました。
 前回記しましたように「リチウムイオン2次電池」と言う名称は、その意味が心技体一致しています。私は専門用語、電池用語はその意味を理解した上で、常に正しく使うべきと思っています。このコラムでも正しい用語を使うよう心掛けますが、間違いがあれば是非ともご指摘下さい。

2)電池及びリチウムイオン電池の概説:放電曲線

 初歩的な話で大変に申し訳ないのですが、学会発表などで充放電試験結果の解釈で疑問を感じることがあるので、敢えて取り上げました。



 Fig.9 破線Aは電流が流れていない時の開路電圧=OCV=(注3)、点線Bは典型的な放電曲線、一点鎖線Cは高率(大電流)放電時の放電曲線を示しています。線B、C(CCV)と破線A(OCV)との電圧差、矢印a、bはエネルギーロスになります。また、矢印qは、高率放電などで蓄電されているが放電できなかった電気量を表しています。この差、矢印a、b、qが生じる理由を考察することが、私のような電気化学出身の電池屋の仕事になります。
 研究されている数は矢印a、bに関するものがほとんどですが、私は矢印qが矢印a、bよりはるかに重要と考えています。先端の材料研究の場合には省略することも仕方がないかもしれませんが、矢印qを説明できることが前提で放電曲線の解釈をしなければ、技術としては片手落ちでしょう。交流測定データで矢印a、bを説明し、同じ理由で矢印qを説明している講演があり、2回ほど間違いを指摘しましたが無視されました。ソーラートロン(交流測定装置)でデータを沢山取るだけでなく、電気化学速度論を学んで「律速段階」を理解した上で、「過電圧」を語るべきです。
 放電直後の電圧降下は所謂IRドロップで、電子抵抗・イオン抵抗(イオン伝導度の逆数)を示しています。このIRドロップは熱損失になりますから、エネルギー効率の面では小さい方が良いことになります。しかし、短絡・ショートをした時にこの値が小さいと、短絡電流は大きくなり安全性は低くなり破裂発火の可能性が高くなります。従って、設計者は意識的に高くすることもあるので、一概に低ければ良い電池と言う訳ではありません。一般に2次電池ではこのIRドロップは非常に小さいので、安全性の見地からはIRドロップは高い方が良い電池と言うことになります。
 放電電圧(CCV)と開路電圧(OCV)との差(矢印a、b)からIRドロップを差し引いた電圧差は、正極、負極それぞれの過電圧を足したものです。この過電圧を研究することが電気化学の重要な役割になります。本来参照電極を用いて区別して考えるべきです(Fig.10)。しかし、困ったことに現状ではリチウムイオン電池内で安定に存在できる電極がないので、実電池では両端電圧での過電圧を考えざるを得ません。実験的には目的とする電極(作用極)の容量を反対の電極(対極)の容量の10分の1以下にすることで、作用極の挙動とする実験手法が使われることがありますが、意図しない現象を招く可能性もあるので、十分に検討してから実験する必要があります。TH大SI教授がチタン酸負極を参照電極に使う試みをしており、その使い勝手・安定性に注目しています。
 電気2重層の放電を示す短時間の電圧降下があり、その後直線に近い放電曲線になり、充電状態=SOC=(注4)に従って電圧が降下していきます。負極の影響は小さく、正極組成の影響を受けた数点の変曲点を伴って徐々に降下します。傾斜電圧は出力制御上は織り込み済みなので、ゆったりと変化することは実用上全く問題ありません。この変曲点について微分などをして丁寧に調査・解析している研究発表をよく見聞きします。材料調査には役立つかも知れませんが、電池の良否判定には結び付きません。
 0.05C以下(小さな電流)の低率放電では放電終期に容量が無くなったことを示す急激な電圧ドロップがあります。通常は副反応の恐れがある0Vよりはるかに高い、例えば2.8Vの放電終止電圧で放電を中断します。通電終了後電圧はOCV(注3)まで回復します。1C以上(大電流)の高率放電では矢印qに示すように、本来の容量より小さな容量しか得られません。この場合も、通電終了後にOCVまで時間をかけて戻ります。(Fig.11)



 この電圧がOCVに戻る現象は非常に重要な意味を持っており、呼び方についてKT大AB教授に相談しました。非常に丁寧な回答があり、「回復過渡電圧」(Fig.11)と呼称すべきと教えていただきました。簡単なメールでの質問でも、その本意まで御理解いただき感心しました。この「回復過渡電圧」については、京都の研究機関が昔から着目していて流石だなと感心していたのですが、最近の解説資料を見ると曖昧な表現が多く誤解を呼ぶのではないかと心配しています。
 この矢印qは高率放電に加え低温でも大きくなります。今後コラム連載の中で詳しく解説します。

 注3)OCV:Open Circuit Voltage 開路電圧。電流が流れていない時の電池電圧。
    CCV:Closed Circuit Voltage、閉路電圧。電流が流れている時は、
 注4)SOC:State of Charge 充電状態。満充電はSOC100%になる。
    DOD:Depth of Discharge 放電状態。満充電は0%。になる。

3)次世代電池:EV用リチウムイオン電池

 

9月度の雑誌・新聞記事について、紹介および私の所見を整理しました(fig.12)。技術的知見には余り役立ちませんが、市場動向、各電池メーカー・各自動車メーカー戦略について知ることができます。真実とは思えない情報もありますが、参考のため添付・掲載します。今月度は、メカニカルチャージについて注釈をつけました。これらの情報を加味して次世代電池の開発動向について解析・検討し、その結果を今後解説・記載して行きます。セカンドオピニオンとして心に留めておけば、きっと将来お役に立つと思います。


Fig.12 2018年9月度記事の紹介と評価



 

日産自動車リーフのEV用電池の1充電走行距離は公称400km、実力300km程度です。通勤と買物に限定した用途ではこの距離で十分ですが、休日のお出掛けの時には不便・不安でしょう。このことが価格以外にEVの普及を妨げています。その壁を乗り越えるためには現行の倍、公称800kmは必要と思います。大雑把に言えば、80kWhの電池を積む必要があります。EVの魅力はガソリンスタンドに行かず家庭あるいは宿泊先で充電できることにあり、充電ステイションに立ち寄って充電することは非常時に限定するべきで、急速充電性能は不要と考えています。寿命については、電解液などを改良した改良型リチウムイオン電池で10年要求は満たせると思います。
 現行のリチウムイオン電池は負極・正極とも理論限界に達しており、これ以上の高容量化は望めません。リチウムイオン電池の標準になっている円筒型18650は、ソニーが最初に出荷した1990年代は1000mAh、2000年代に2000mAh、2010年代3000mAhと容量増を果たしました。設計で達成出来たのは2500mAhまでで、その後は負極の高密度充填、ニッケル増と言う安全性を犠牲にしての容量増で、これ以上は安全性に無理があると懸念しています。
 電極活物質以外の電解液・セパレータなどの補助部品の改良は、電極活物質の能力を十分に引き出すことが出来るので数10%の改良には役立ちますが、倍の容量増は期待できません。電解液・セパレータなどの開発で数倍の容量増が実現できたと言う発表を見聞きしますが、電極活物質は何ですかと聞きたくなります。注目を浴びている固体電解質も、それ自体では高容量化の課題解決になりません。絶対に誤解があってはならない点です。

4)従来説=両持ち論=グラファイト中のリチウムイオン



 リチウムイオン電池で実用化されているカーボン構造はグラファイトとハードカーボンです。グラファイトに貯蔵されたリチウムイオンについては、リチウムイオンがグラファイト層間0.0335nmに入り、充電により負に帯電した上下2層のグラフェン層に挟まれた位置が安定な存在と言われています。リチウムイオンは正に帯電し、グラフェン層は充電により負に帯電しているのでお互いに引き付け合います。この引き付ける静電力が上下均等(f1=f2) になり、上下層の中央で釣り合うことにより安定に存在すると言われています。 (Fig.13)
 しかし、全ての場で揺らぎはあります。中央に位置するリチウムイオンがほんの僅か上層に近付くと上からの引力<f1>は少し増えます。下層からの引力<f2>は距離が遠くなるので少し小さくなります。つまり、f1>f2となり、リチウムイオンは上層に向かって移動し、その結果f1>>f2となりリチウムイオンは益々上層に向かって移動します。
 少し長くなりますが、私が思い出した説話を引用します


<大岡裁き/子争い>
 子供の母親は一人ですが、母親を主張する女子が二人いました。双方共に「わたしこそがこの子の母親よ」と、頑として引かない様子です。二人の争いはとうとう収まらず、大岡越前の奉行所でついに白黒付ける事になりました。
 大岡越前は二人にこう提案しました『その子の腕を一本ずつ持ち、それを引っ張り合いなさい。 勝った方を母親と認めよう。』 その言葉に従い、二人の母親は子供を引っ張り合いました。当然ながら引っ張られた子供はただではすみません。たまらず「痛い、痛い!」と叫びました。 すると、その声を聞いて哀れに思ったのか、片方の母親が手を離してしまいます。
引っ張りきった方の母親は子供を嬉々として連れて行こうとしますが、大岡越前はこれを制止します。
 『本当の親なら、子が痛いと叫んでいる行為をどうして続けられようか』と言いました。母の持つ愛情をしっかり見切ったのでした。これにて一件落着。



 

つまり、両方から引っ張っている状態のグラファイト中リチウムイオンは決して安定ではないと考えました。この両方から引っ張って安定に存在すると言う従来の説を私は「両持ち論」と名付けました。
 カーボンナノチューブのような円筒中では、Fig.14に図示するように周囲から引っ張られて中央に存在することになります。多角形の壁に囲まれた空間の場合には安定に落ち着く位置を見つけるのに、リチウムイオンは苦労しそうです。
 この「両持ち論」に疑問を抱き「片持ち論」を考え付き、「新規な電池理論」を考案しました。

5)おわりに

 

第2回は電池屋としての放電曲線の見方を解説しました。幼稚な話ですから専門家の方は読み飛ばして下さい。「律速段階・過電圧」についてもう少し解り易く説明すべきであったと後悔しています。次回は充電曲線について解析します。電池の容量は電極活物質で決まります。その理論容量を如何に100%引き出し放電させるかが電池屋の腕の見せ所です。EV使用ではリチウムイオン電池は安全性を考慮しても、ほぼ理論容量を引き出せるはずです。倍の容量が要求される次世代電池では電極活物質開発に研究・開発資源を注ぎ込むべきです。次回からはEV関連メーカーの開発動向を紹介します。カーボン系での高容量化が断念される理由、グラファイトで内蔵される状態について「両持ち論」を説明しその矛盾を指摘しました。次回は私が考案・提唱している「片持ち論」を解説します。
 第1回で数通のご意見をいただきました。次回以降に反映させていきます。ご批判・ご質問を大歓迎しておりますので、是非お寄せください。次回をお楽しみに!


第1回(2018/10/10)



1)自己紹介および本コラム執筆について

 初めまして、バッテリーコンシェルジュ佐野です。
 記録的豪雨、経験のない猛暑、最大級台風、震度7の地震があった異常な夏が過ぎました。自然に狂いが生じていると言われることもありますが、彼岸花は例年通りお彼岸の日にお墓に咲きました。葉のない茎の上に華麗な朱色と純白の花が乗っている姿は孤高の華やかさがあります。純白は珍しく突然変異かも知れません。
 平成20年11月から翌年2月まで当コラムを執筆していました。丁度10年振りになります。
     https://johokiko.co.jp/column/column_shigeru_sano.php
 「バッテリーコンシェルジュ」と言う肩書は勝手に作り出したもので、今の所苦情を聞いていませんが、学会・業界では認知されている訳ではありません。学会などで名乗る時には恥ずかしく言い淀んでいます。
 今春に名古屋にある一般財団法人ファインセラミックスセンター(JFCCと略す)の客員研究員を退任し、現在は某充放電装置メーカーの援助で何とか電池と関り続けています。中学2年の時に電池研究者になる夢を抱き、半世紀に亘り電池に携わってきました。研究開発に関し世界一の失敗例を有していると自負しています。(FIG.1)



 

前回執筆から10年が経ち、EV用電池開発など電池業界は激変しており、また、「新規な電池理論」について篩膜を実証できました。私の知見が電池技術修得、次世代開発に役立つことがあると執筆を思い付き、鰹報機構様にご相談しました所、本コラム執筆に快諾いただきました。月1回全24回の掲載を予定しております。各回2)、3)、4)項を平行に書き進めていきます。3)項は順不同になりますがご容赦願います。

2)電池全般及びリチウムイオン電池の特徴と課題
  副題:電池及びリチウムイオン電池の現状


 

最初に電池工業会発行の「でんち」に掲載されている国内電池産業の概要を紹介します。小冊子「でんち」は電池工業会が編纂しており、電池業界の施策などが解り易く書かれています。屋井電器が登場する電池開発の歴史などは面白く読ませていただきました。
 国内での電池生産は約8,000億円で、年率5%上昇を続けられれば5年程で1兆円産業になります。充電できない1次電池は8%以内です。量販店で安売りされているマンガン乾電池の国内生産は打ち切られています。乾電池トップメーカー某社の最新工場はアフリカのコンゴにあると聞いています。コンゴはコバルト生産でも有名で電池との関りが強い国です。(追記:寄稿時には知らなかったのですが、コンゴのムクウェグさんがノーベル平和賞を受賞されました。コンゴの紛争には鉱物資源の利権が絡んでいると聞き複雑な気持ちです。)2次電池販売金額は7,900億円で、大半はリチウムイオン電池(注1)で、内車載用が2,700億円65%です。鉛蓄電池、ニッケル水素電池はほとんど増えることなく、リチウムイオン電池特に車載用と輸出が伸びを支えています。(Fig.2) 輸出先は大半が東南アジアです。グラフの縦軸の金額には余り意味がありません。1992年にソニーが製品化に成功したリチウムイオン電池も携帯電話に代表される民生用は韓国、中国に追い抜かれ、車載用も中国に追い抜かれたと言われています。世界規模での電池市場については調査会社の報告を参考にして下さい。
 昨秋に中国CATL社トップのEV用リチウムイオン電池に関する講演を聞きました。数年前に日本メーカー2社と韓国LG化学の方のEV用リチウムイオン電池の技術講演を聞いた時に、日本メーカーが最新技術を隠したことを割り引いても、LG化学の技術トップの講演内容が一番素晴らしいと思いました。その時の印象と全く同じでCATL技術トップがリチウムイオン電池の技術に真摯に立ち向かって事業を進めていると感じました。一方、日本メーカートップの講演からは技術を理解した上で話されているようには聞こえませんでした。リチウムイオン電池技術では日本メーカーは完全に追い付かれました。

  

※注1:「リチウムイオン2次電池」という名称は、ソニー鰍ェ最初に製品化した時に命名し、現在一般に通用している名称です。リチウム金属電池と区別する呼び方で、技術的には正負極どちらに収納されてもイオン状態にあり、使用面ではリチウム金属に比し遥かに安全であることを表現していて、非常に上手い名付けと感心しています。充電できないリチウムイオン1次電池は存在していないので、本稿では充電できるという意味の2次(蓄)は省略します。文字数制限でLIBと略すこともあります。Iを小文字iで表記していることがありますが、リチウム金属電池と混同するので適当とは思えません。なお、Siなどとの合金系負極電池を、リチウムイオン電池と呼称するのは相応しくないと思います。


<リチウムイオン電池販売推移>車載用と輸出が伸びています。


3)EV用次世代電池の課題 副題:用途別要求特性とHEV用電池について

 

電池は用途に応じて機種が決められます。代表的な用途について要求される特性を整理しました。(Fig.3)
 民生用と総称している携帯電話・パソコンなどの携帯機器では現状のリチウムイオン電池で最低限のニーズは満たせています。使用頻度の高いユーザーはリチウムイオン電池が内蔵されているモバイルバッテリーと言う携帯型充電器を予備に持っています。
 ハイブリッドカー用電池は、トヨタ自動車が関連会社のPEVE社製ニッケル水素電池とリチウムイオン電池とを車種別に併用し、ホンダ自動車がGSユアサ社との合弁会社ブルーエナジー社製リチウムイオン電池を搭載しています。基本的にはガソリンエンジンで走行し、スタート時・急加速時などのエンジン効率が良くない時の補助としての役割で、エネルギー貯蔵自体は重要な性能ではなく、5Ah程度の電池が採用されています。一方、出力は重要で数kw、つまり10C(※注)以上の電流を流せる設計になっています。ブルーエナジー社の負極にはグラファイトではなくハードカーボンが使われています。リチウムイオンの挿入・脱離速度が速い、膨張収縮が少ないなどの利点から採用されていると思います。僅かであってもグラファイトの膨張収縮はSEI(固体電解質界面:後述)の溶解・沈殿による電池劣化を促進します。
 トヨタ自動車新型プリウスにはニッケル水素電池とリチウムイオン電池の両方が搭載されています。電池占有容積は35.5Lと30.5Lとで5Lの差が電池容量に反映され、前者は6.5Ah、後者は3.6Ahです。公表された写真を見るとこの差を制御回路が占有しています。つまりニッケル水素電池に比しリチウムイオン電池は複雑な制御が必要なことが理解できます。両者の電池容量差は理論体積エネルギー密度からは理解できない大きな差で、リチウムイオン電池がエネルギー密度を無視してパワー重視設計、つまり活物質の充填率を下げた設計になっていると推定します。(Fig.4)
 定置用は後述しますが、リチウムイオン電池では価格が難問と思います。

※注2:「C」は電池専門記号で、容量を乗じると電流に換算できます。異なる容量の電池特性を比較評価する時に便利な単位です。ただし、容量の少ない薄膜電池では適用できません。ある学会で、「薄膜電池で100C充電ができた。」と言う発表があり、某電池メーカーの方が座長としての中立の立場を忘れ憤慨していました。
 


<用途別要求特性>EV用は全て高性能で、特にエネルギー密度が重要!



<HEV用とEV用> HEV用はパワー重視、EV用はエネルギー密度が重要!


4)新規な電池理論「片持ち論+篩膜」
  副題:新規な電池理論考案のきっかけとなったカーボンナノチューブ


 

JFCC在籍中に、楠主幹研究員(その後名古屋大学教授、今春退任)が発明したカーボンナノチューブ(CNTと略す)の応用開発を担当し、楠主幹研究員よりCNTについて教えていただきました。楠CNTはSiCの単結晶基板を加熱分解して成長させ、非常に密なブラシのような形状です。(Fig.5,6) その特性を活かし研磨材としての応用を検討しました。特性は非常に良いのですが、価格がネックになり実用化は出来ていないと思います。(Fig.7)
 CNTはS大のE教授を通じて知識がありました。E教授とは30年程前に特殊カーボンの応用開発に関する国プロ委員会でご一緒し、その精力的なご活躍に感心しました。E教授が発明したCNT前身の気相成長カーボンファイバー(VGCF)は昭和電工(株)にて製品化され、負極添加剤としてリチウムイオン電池の重要な材料となっています。
 私は研磨剤としての応用と並行して電池電極として使えないかを考えましたが、この内径では内部が電解液分解生成物で埋められイオンが動けなくなり、電池として機能できないことを直ぐに理解しました。(Fig.8) CNTを電池材料にする研究が多くなされましたが、結局は全てこの結論になっています。金属酸化物を導入してレドックスキャパシタ容量を測定して、CNTで電池ができたと言う発表には厭になります。
 なお、JFCCのK氏は硫酸系で水分解が起こらない電位域でのキャパシタ容量を測定し、非常にきれいなデータを得ています。CNTの先端をキャップと言いますが、そのキャップを焼き切って除去するとCNT内部に電解液が入り容量が増大することを実証しました。この知見は多孔性カーボン全般に適用できる非常に貴重な実験結果で、「新規な電池理論」構築にも役立っています。(特開2010-10623)


<SiC表面分解法CNT>ブラシのように密に林立している。



<SiC表面分解法の機構>SiCを真空加熱して分解する。



<SiC表面分解法CNTの特長>研磨材として優れた特性を有している。



<CNTが電池に使えない理由>CNT内部がSEI分解生成物で埋まり、動作しない。


5)終わりに

 

今回は自己紹介から始め本コラムの今後の進め方について記述しました。
 電池業界は車載用リチウムイオン電池に支えられ幸いにも現在は成長産業ですが、他の電池のように衰退に向かわないためには、産・官・学の真剣な取り組みが必要と考えています。次回は基礎的なことですが、充放電曲線の見方について説明をします。用途別に電池に対する要求性能を整理し、HEV用電池はパワー重視設計であることを説明しました。次回は、EV用としてのリチウムイオン電池を評価します。「新規な電池理論」考案のきっかけになったCNTを紹介しました。次回は、グラファイトを代表とするカーボン材料におけるリチウムイオン貯蔵に関する現行理論の矛盾について詳述します。
 9月25日、26日金沢大学で開催された「2018年電気化学会秋季大会」に参加しました。発表内容は次回に報告します。参加者1000人以上、発表500件、懇親会300人と聞きました。会場が広いためか各会場とも空いていました。韓国・中国からの参加者はほとんど見掛けませんでした。11月末開催の電池討論会に集中しているかも知れませんが、日本の電気化学会には価値がないと思われるようになったとしたら残念です。
 久し振りの執筆で手古摺りました。お読み難い部分が沢山あったと思いますがご容赦願います。徐々に読み易い文章が書けるようになるとご期待願います。ご質問・ご意見をお寄せいただけますことを楽しみにしております。是非ともよろしくお願い申し上げます。
 彼岸花と言えば、山口百恵が唄った「曼珠沙華(シャカ)」を思い出します。彼岸花と同じく本コラムも毒を抜けば非常時にきっと役立つはずです。次回をお楽しみに!

佐野 氏のご紹介

佐野 茂 氏
バッテリーコンシェルジュ

■講師自己紹介: ・中学2年の時、電池研究者になる夢を抱いた。
・湯浅電池(株)(現(株)GSユアサ)で多くの電池研究。
・成功談はないが、失敗談は豊富にある。

■ご略歴:
 1972年 東工大電気化学科卒。
 1973年 湯浅電池(現GSユアサ)入社。蓄電池研究。
 1993年 リチウムイオン電池研究・開発・量試。
 2005年 ファインセラミックスセンター。「新規な電池理論」考案・出願。
 2007年 国プロ受託「計算化学による実証」。
 2009年 東洋システム鞄d池評価担当。
 2016年 バッテリーコンシェルジュ。「SiC篩膜」特許出願。



注目の新刊

雑誌 月刊化学物質管理

外観検査

生物学的同等性試験

最新の医療機器薬事入門

積層セラミックコンデンサ

全固体電池開発

RoHS指令・整合規格 徹底理解

高分子劣化・加速試験

2019カメラモジュール

分野別のメニュー

化学・電気系他分野別一覧

  植物工場他

  機械学習他

ヘルスケア系分野別一覧

  海外関連

  医療機器

各業界共通
マーケティング・人材教育等

「化学物質情報局」

特許・パテント一覧 INDEX
(日本弁理士会 継続研修)

印刷用申込フォーム    

セミナー用

書籍用

会社概要 プライバシーポリシー 通信販売法の定めによる表示 商標について リクルート
Copyright ©2011 情報機構 All Rights Reserved.