8月28日セミナー.ベイズ統計モデリングによるデータ分析入門
よくあるお問合わせよくあるお問合せ リクエストリクエスト セミナー会場セミナー会場へのアクセス
セミナーのメニュー

化学・電気系 その他各分野
一覧へ→
  ヘルスケア系
一覧へ→
情報機構 技術書籍情報機構 技術書籍
技術書籍 一覧技術書籍 一覧
   <新刊書籍>
  CMOS
  プラスチックリサイクル
  全固体電池材料技術
電子書籍電子書籍
化学物質管理化学物質管理
通信教育講座通信教育講座
LMS(e-learning)LMS(e-learning)
セミナー収録DVDDVD
社内研修DVD
セミナー講師のコラムです。講師コラム
  ↑2023/7/7更新!!
お申し込み・振込み要領お申込み・振込要領
案内登録案内登録
↑ ↑ ↑
新着セミナー、新刊図書情報をお届けします。

※リクエスト・お問合せ等
はこちら→



SSL GMOグローバルサインのサイトシール  



Zoom

★ベイズ統計の基本、一般化線形モデル、状態空間モデル。


ベイズ統計モデリングによるデータ分析入門

<Zoomによるオンラインセミナー>

講師

Logics of Blue 馬場真哉 氏

講師紹介

■主経歴
2014年4月-2017年6月 IT企業にて生産管理システムの開発などに従事。
2017年7月-現在     独立し、データ分析支援や、書籍の執筆などに従事。
2020年11月-現在    東京医科歯科大学非常勤講師
2021年2月-2023年3月 岩手大学客員准教授
2022年4月-現在     帝京大学特任講師

■主要著書
・平均・分散から始める一般化線形モデル入門(2015)
・時系列分析と状態空間モデルの基礎:RとStanで学ぶ理論と実装(2018)
・Pythonで学ぶあたらしい統計学の教科書(2018)
・RとStanではじめる ベイズ統計モデリングによるデータ分析入門(2019)
・R言語ではじめる プログラミングとデータ分析(2020)
・意思決定分析と予測の活用(2021)
・Pythonで学ぶあたらしい統計学の教科書 第2版(2022)

■専門・得意分野
・数理統計学の理論と応用
・統計的意思決定理論とオペレーションズ・リサーチ

<その他関連セミナー>
統計解析 一覧はこちら

日時・会場・受講料

●日時 2024年8月28日(水) 10:30-16:30
●会場 会場での講義は行いません。
●受講料 1名47,300円(税込(消費税10%)、資料付)
 *1社2名以上同時申込の場合、1名につき36,300円
      *学校法人割引;学生、教員のご参加は受講料50%割引。→「セミナー申込要領・手順」を確認下さい。

 ●録音・録画行為は固くお断り致します。


■ セミナーお申込手順からセミナー当日の主な流れ →

※配布資料等について

●配布資料はPDF等のデータで配布致します。ダウンロード方法等はメールでご案内致します。
・配布資料に関するご案内は、開催1週前~前日を目安にご連絡致します。
・準備の都合上、開催1営業日前の12:00までにお申し込みをお願い致します。
 (土、日、祝日は営業日としてカウント致しません。)
・セミナー資料の再配布は対応できかねます。必ず期限内にダウンロードください。

●当日、可能な範囲でご質問にお答えします。(全ての質問にお答えできない可能性もございます。何卒ご了承ください。)
●本講座で使用する資料や配信動画は著作物であり、無断での録音・録画・複写・転載・配布・上映・販売などは禁止致します。
●ご受講に際しご質問・要望などございましたら、下記メールアドレス宛にお問い合わせください。
req@johokiko.co.jp


オンラインセミナーご受講に関する各種案内(ご確認の上、お申込みください。)
・PC/タブレット/スマートフォン等、Zoomが使用できるデバイスをご用意ください。
・インターネット 回線速度の目安(推奨) 下り:20Mbps以上
・開催が近くなりましたら、Zoom入室URL、配布資料、当日の流れなどをメールでご連絡致します。開催前日(営業日)の12:00までにメールが届かない場合は必ず弊社までご一報ください。
・受講者側のVPN、セキュリティ設定、通信帯域等のネットワーク環境ならびに使用デバイスの不具合については弊社では対応致しかねますので予めご了承ください。

Zoom
Zoom使用に関する注意事項(クリックして展開)
・公式サイトから必ず事前のテストミーティングをお試しください。
 → 確認はこちら
 →Skype/Teams/LINEなど別のミーティングアプリが起動していると、Zoomで音声が聞こえない、
  カメラ・マイクが使えない等の事象が起きる可能性がございます。
  お手数ですが、これらのアプリは閉じた状態にてZoomにご参加ください。
 →音声が聞こえない場合の対処例

・Zoomアプリのインストール、Zoomへのサインアップをせずブラウザからの参加も可能です。
 →参加方法はこちら
 →一部のブラウザは音声が聞こえない等の不具合が起きる可能性があります。
  対応ブラウザをご確認の上、必ず事前のテストミーティング をお願いします。
  (iOSやAndroidOS ご利用の場合は、アプリインストールが必須となります)

セミナーポイント

■講座のポイント
 ベイズ統計モデリングによるデータ分析は、データを柔軟に分析することを可能としました。本セミナーでは、ベイズ統計モデリングの基礎理論をおさらいしたうえで、一般化線形モデル(GLM)と状態空間モデル(SSM)を中心に解説します。
 GLMは、古典的な回帰分析を拡張したものです。個数データや比率データなどを柔軟にモデル化できます。SSMは時系列データを分析するときにしばしば使われるモデルです。季節やトレンドの構造を柔軟に表現できます。両者を学ぶことで、様々なデータに対してモデルを作って分析を行うことができるようになります。特にSSMは、近年マーケティングのデータ分析などで頻繁に用いられるようになりました。本セミナーでは広告の効果が時間によって減衰する状況などをSSMで分析します。
 初等的な統計学の用語(期待値・分散・区間推定・回帰分析など)と確率論の基礎用語(確率の加法定理・確率の乗法定理など)については、説明を省略することがあります。
 MCMCのアルゴリズムなど理論的な詳細にあまり時間をかけない代わりに、ベイズ統計モデリングの大枠をつかんでいただくことを目標とします。またRとStanを使った実装コードをあわせて紹介します。具体的な分析を講師のPCで実演することで、データ分析のイメージをつかんでいただきます。

■受講後、習得できること
・ベイズ統計モデリングの基礎理論
・R言語とStanを用いた分析方法
・一般化線形モデル(GLM)によるデータの解釈と予測
・状態空間モデル(SSM)によるデータの解釈と予測

セミナー内容

■講演プログラム
1.はじめに
2.ベイズ統計モデリングの基本

 2.1 統計学と確率分布
 2.2 ベイズ統計モデリングの概要
 2.3 確率モデルの設計事例
 2.4 ベイズ推論の基本
 2.5 MCMCの基本
3.一般化線形モデル
 3.1 回帰分析の復習
 3.2 一般化線形モデルの基本
 3.3 ポアソン回帰モデル
 3.4 ロジスティック回帰モデル
 3.5 一般化線形混合モデル
4.状態空間モデル
 4.1 状態空間モデルの基本
 4.2 ホワイトノイズとランダムウォーク
 4.3 ローカルレベルモデル
 4.4 時変係数モデル
 4.5 トレンドの構造
 4.6 周期性のモデル化
 4.7 正規分布以外の確率分布を用いた状態空間モデル

(質疑応答)

セミナー番号:AF2408P3

top

会社概要 プライバシーポリシー 特定商取引法に基づく表記 商標について リクルート
Copyright ©2011 技術セミナー・技術書籍の情報機構 All Rights Reserved.